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1. INTRODUCTION
Document transfer in the Internet is regulated by distributed
packet-based congestion control mechanisms, usually relying
on TCP. By dividing a document into packets, parts of one
file reside at different nodes along the transmission path.
The “instantaneous transfer rate” of the entire document
can be thought of as being equal to the minimum trans-
fer rate along the entire path. Bandwidth-sharing networks
as considered by Massoulié & Roberts [2] provide a natural
modeling framework for the dynamic flow-level interaction
among document transfers. The class of α-fair policies for
such networks, as introduced by Mo & Walrand [3], captures
a wide range of distributed allocation mechanisms such as
TCP, the proportional fair allocation and the max-min fair
allocation.
Identifying optimal resource allocations in bandwidth-sharing
networks is inherently complex: The distributed nature of
resource allocation management prohibits global coordina-
tion for efficiency, i.e., aiming at full resource usage at all
times. In addition, it is well recognized that resource ef-
ficiency may be conflicting with other critical performance
measures such as flow delay. Without a notion of optimal
(or “near-optimal”) behavior, the performance of resource
allocation schemes cannot be assessed properly.
An exact characterization of the optimal policy is in general
not possible. In addition, numerically determining the op-
timal strategy often requires excessive computational effort.
We therefore set out to study these in asymptotic regimes.
In [6] this was done for a highly loaded network. In this pa-
per, we study the asymptotically optimal strategies in the
under-loaded case after scaling the state space. Armed with
these, we then assess the potential gain that any sophisti-
cated strategy can achieve over standard α-fair strategies,
and confirm that α-fair strategies perform excellently. This
is particularly true for the proportional fair policy (α = 1).
Let us focus on a linear bandwidth-sharing network of two
nodes, each with unit service rate, see Figure 1. There are
three traffic classes, where class i requires service at node i
only, i = 1, 2, while class 0 requires service at both nodes
simultaneously. Class-i users arrive as a Poisson process of
rate λi, and have exponentially distributed service require-
ments, Bi, with mean 1/µi. Let the traffic load of class i be

ρi := λi

µi
, thus the load at node i is ρ0 + ρi. The conditions

ρ0 + ρi < 1, i = 1, 2, are necessary for stability. For the
class of α-fair policies these conditions are also sufficient [1].
This is in contrast with straight-forward extensions of size-
based scheduling strategies (known to have certain optimal-
ity properties when there is a single resource [4, 5]) which
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Figure 1: Linear bandwidth-sharing network

may not guarantee maximum stability [7]. The full-length
version of this paper is available as a report, see [8].

2. OPTIMALITY RESULTS
The central objective is to minimize the mean total number
of users in the network among all non-anticipating policies.
In the network context, besides trying to maximize the to-
tal output rate of the network, we must take into account
that when serving class 1 while class 0 is present and class
2 is empty, leaves node 2 under-utilized. When µ0 ≥ µ1, µ2,
these two objectives are not conflicting and the optimal pol-
icy degenerates to a static priority rule.

Proposition 2.1. If µ1 + µ2 ≤ µ0, then the number of
users is minimized (at any time) by giving preemptive pri-
ority to class 0. Similarly, if µ1, µ2 ≤ µ0 ≤ µ1 + µ2, then
in both nodes full service must be allocated to class 0, unless
both classes 1 and 2 are present as well.

The case that remains unsolved is when for example µ0 <
µ1. When users of both classes 1 and 2 are present, serv-
ing them will be optimal, since µ0 ≤ µ1 + µ2. When there
are only users of classes 0 and 1 present (no class-2 users),
no strict priority rule is optimal. It may still be better to
sometimes serve class 0 even if that does not maximize the
departure rate in the short run. Doing so, creates the poten-
tial to serve classes 1 and 2 simultaneously in the future and
therefore offer a higher degree of parallelism. Hence as the
number of users varies, the system will dynamically switch
between several priority rules, characterized by a switching
curve as stated in the following proposition. Denote by Ni(t)
the number of class-i users at time t.

Proposition 2.2. There exists a switching curve h(·) such
that, when N2(t) = 0 it is optimal to serve class 0 at full rate
if N1(t) ≤ h(N0(t)) and to serve class 1 otherwise.

An exact characterization of the switching curves is in gen-
eral not possible. We therefore set out to study these in
asymptotic regimes.



3. FLUID SCALING
We consider a sequence of systems indexed by a super-
script k. The number of class-i users in the k-th system at
time t is denoted by Nk

i (t). We study the fluid limits, where

time is also scaled linearly: limk→∞
Nk

i (kt)

k
=: ni(t). The

initial queue length depends on k such that ni(0) = ai. The

fluid process is described by
dnj(t)

dt
= λj − µjsj(t), for j =

0, 1, 2, with s0 + si ≤ 1, i = 1, 2. Optimizing the “drain
time” under a fluid scaling gives a simple linear switching
strategy, which turns out to accurately approximate the nu-
merically found optimal strategy in the stochastic model
when ρ1 6= ρ2.

Proposition 3.1. Assume ρ1 ≤ ρ2, ρ0 + ρ2 < 1 and
n2 = 0.
If µ1, µ2 ≥ µ0, it is optimal for the fluid model to serve
class 0 at rate 1 − ρ2 (keeping n2 equal to zero) whenever
n1 ≤ ρ2−ρ1

1−ρ0−ρ2
n0 and fully serve class 1 otherwise.

If µ1 ≥ µ0 ≥ µ2, then the corresponding condition is n1 ≤
µ1µ2/µ0

µ1+µ2−µ0
× ρ2−ρ1

1−ρ0−ρ2
n0.

4. CENTRAL LIMIT THEOREM SCALING
When the two nodes on the flow path are equally congested
(ρ1 = ρ2), however, the fluid scaling is not appropriate, and
the corresponding strategy may not even ensure stability.
For example, when µ1, µ2 ≥ µ0, the switching curves in
the fluid model are both equal to zero, and hence the fluid
policy gives preemptive priority to classes 1 and 2. However,
in the stochastic model this leads to an unstable system if
ρ0 > (1−ρ1)(1−ρ2). Let us therefore describe more carefully
the behavior of the processes below a switching curve. We
study the free process (denoted by the symbol ∼) that only
serves classes 1 and 2 during (short) excursions when both
of them are positive and otherwise serves class 0. From the
central limit theorem we obtain that Ñ1 has no drift (since

ρ1 = ρ2) and random fluctuations are of order
√

k in a time

span k. We still have a linear drift for Ñ0:

Proposition 4.1. Assume ρ1 = ρ2, limk→∞
Ñk

1
(0)

µ1

√
k

= d1

and Ñk
2 (0) ≡ 0. Then ñ0(t) = ñ0(0) − µ0(1 − ρ0 − ρ1)t,

ñi(t) = ñi(0), i = 1, 2 and

lim
k→∞

Ñk
1 (kt)

µ1

√
k

d
= 1(BM(t)+d1≥0)(BM(t) + d1),

where BM(t) is a Brownian motion.

Although the above provides theoretical ground for the asymp-
totic optimality of a square-root switching curve of the shape
Ni = ci

√
N0, it is not straightforward to analytically deter-

mine the optimal value for ci. It involves calculating the
first passage probabilities for the switching curves.

5. PERFORMANCE EVALUATION
We investigate switching curves of shape Ni = cif(N0),
where f(·) is either a square-root, linear or a threshold func-
tion. The value of ci is varied to assess its impact. We let
µ0 = 2, µ1 = µ2 = 5. From Figure 2 we observe that the
linear (square-root) policy attains the value of the optimal
policy for ρ1 6= ρ2 (ρ1 = ρ2) given that the best coefficient ci

is chosen. Note that the proportional fair allocation (PF) is
only a few percent away from the theoretical optimum and
performs very well.
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Figure 2: Performance of switching policies com-
pared to the proportional fairness policy (PF)

6. CONCLUSIONS
Since optimal resource allocations are non-trivial in bandwidth-
sharing networks, we set out to characterize their functional
form under a fluid and diffusion scaling. Our aim was not
to propose practically implementable strategies, but rather
to provide a benchmark against which α-fair strategies can
be tested. For illustration, the optimal policy depicted by
a horizontal line in Figure 2 required a week’s computation
time, while the approximation by varying ci can be obtained
in real time.
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