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ABSTRACT
We study the steady-state queue-length vector in a multi-
class single-server queue with relative priorities. Upon ser-
vice completion, the probability that the next customer to
be served is from class k is controlled by class-dependent
weights. Once a customer has started service, it is served
without interruption until completion. This is a generaliza-
tion of the random-order-of-service discipline.
We investigate the system in a heavy-tra�c regime. We

�rst establish a state-space collapse for the scaled queue
length vector, that is, the scaled queue length vector is in
the limit the product of an exponentially distributed ran-
dom variable and a deterministic vector. As a direct con-
sequence, we obtain that the scaled number of customers
in the system reduces as classes with smaller mean service
requirement obtain relatively larger weights. In addition,
we present the distribution of the scaled sojourn time of a
customer given its class, in heavy tra�c.

1. INTRODUCTION
In this paper we consider an M/G/1 queue with K dif-

ferent classes of customers. Service is non-preemptive and
upon service completion, a class-k customer, k = 1, . . . ,K,
is selected to be served with probability

pk∑
j njpj

, (1)

where pk, k = 1, . . . ,K, are given class-dependent weights,
and nk are the number of class-k customers present in the
system at the decision epoch. This model was �rst intro-
duced in [6]. Expressions for the mean waiting time of a
customer given its class have been obtained in [7]. In [8, 9]
the authors derive di�erential equations that the transform
of the joint queue lengths and the waiting time in steady-
state must satisfy. In particular, they obtain systems of lin-
ear equations from which the moments of the queue lengths
can be obtained.
When all the weights pk, k = 1, . . . ,K, are equal, the

model reduces to the random-order-of-service (ROS) disci-
pline. Classical papers on ROS are for example [12, 13, 14].
The Laplace transform for the waiting time distribution was
obtained in [12]. In [12, 13, 16], ROS is studied in a heavy-
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tra�c setting and for service requirements having �nite vari-
ance it was shown that the scaled queue length converges to
an exponential distribution and that the scaled waiting time
is equal in distribution to the product of two independent
exponential random variables. More recently, the authors
of [4] obtained the waiting time distribution in heavy tra�c
for certain service requirements having in�nite variance. In
addition, waiting time tail asymptotics have been obtained
for heavy-tailed service time distributions. In [2] the au-
thors derive the relationship between the distribution of the
waiting time under ROS and the sojourn time under the
processor-sharing discipline.
Both ROS and its multi-class generalization are funda-

mental models with application in various domains, and in
particular in telecommunication networks [3].
In the present study, we are interested in the distribution

of both the queue length vector and the waiting time for the
multi-class queue with relative priorities, and we will study
these in the heavy-tra�c regime. In particular, we establish
a state-space collapse for the queue length vector. The re-
sult shows that in the limit, the scaled queue length vector is
the product of an exponentially distributed random variable
and a deterministic vector. Making use of the state-space
collapse result, we derive interesting properties. First of all,
we show that the scaled holding cost reduces as classes with
higher value of ck/E(Bk) obtain a relatively larger weight,
where ck is the cost associated to class k, and E(Bk) is the
mean service requirement of a class-k customer. This can
be seen as an extension of the optimality result of the cµ-
rule [5], the strict priority discipline that gives priority in
decreasing order of ck/E(Bk). Second, we study the distri-
bution of the waiting time for a customer of a given class in
heavy tra�c and obtain that it is distributed as the product
of two exponentially distributed random variables.
In this short paper we provide sketches of the proofs. Full

proofs are available in the technical report [1].

2. MODEL DESCRIPTION
We consider a multi-class single-server queue withK classes

of customers. Class-k customers, k = 1, . . . ,K, arrive ac-
cording to independent Poisson processes with rate λk. We
denote the overall arrival rate by λ =

∑K
k=1 λk. We assume

that class-k customers have i.i.d. generally distributed ser-
vice requirements Bk, with distribution function Bk(t) and
Laplace-Stieltjes transform B∗

k(s) =
∫∞
0

e−stdBk(t). We

assume E(B2
k) < ∞, for all k. The tra�c intensity for



class-k customers is ρk = λkE(Bk) and ρ =
∑K

k=1 ρk =∑K
k=1 λkE(Bk) = λ

∑K
k=1 αkE(Bk), denotes the total tra�c

intensity, where we denote by αk = λk/λ the probability an
arrival is of class k. Service is non-preemptive and upon ser-
vice completion a class-k customer is selected to be served
with probability as given in (1).
We investigate the queue when it is near saturation, i.e.,

ρ ↑ 1, which is commonly referred to as the heavy-tra�c
regime. This regime can be obtained by letting λ ↑ λ̂ :=
(
∑K

k=1 αkE(Bk))
−1, since then ρ = λ

∑K
k=1 αkE(Bk) ↑ 1.

When passing to the heavy-tra�c regime we keep the frac-
tion of class-k arrivals, αk, �xed and we de�ne λ̂k := αkλ̂.
We denote the steady-state number of class-k customers

in the system at departure epochs by Qk and at arbitrary
epochs by Nk.

3. STATE­SPACE COLLAPSE
In this section we present the state-space collapse result

for the steady-state queue length distribution at departure
and arbitrary epochs. The result shows that in the limit,
the queue length vector is the product of an exponentially
distributed random variable and a deterministic vector.

Proposition 3.1. When scaled by 1−ρ, the queue length
vector at departure and arbitrary time epochs has a proper
limiting distribution as (λ1, . . . , λK) → (λ̂1, . . . , λ̂K):

(1− ρ)(Q1, . . . , QK)
d→ (Q̂1, . . . , Q̂K)

d
= Y (

λ̂1

p1
,
λ̂2

p2
, . . . ,

λ̂K

pK
)

and

(1− ρ)(N1, . . . , NK)
d→ (N̂1, . . . , N̂K)

d
= X(

λ̂1

p1
,
λ̂2

p2
, . . . ,

λ̂K

pK
)

where
d→ denotes convergence in distribution and X and Y

are exponentially distributed random variables with mean

1

ν(p)
:=

∑K
k=1 λ̂kE(B2

k)

2
∑K

k=1
λ̂k
pk

E(Bk)
. (2)

Remark 1 (Random-order-of-service). In the case
of one class, i.e., K = 1, the system reduces to the ROS dis-
cipline. Proposition 3.1 implies that the queue length is ex-

ponentially distributed with mean λ̂E(B2)
2

. This has been ob-
tained previously by Kingman [12]. Note that [12] states the
result for normalized arrival rate and service times, and thus
obtains that the mean number of customers is (1 + σ2)/2,
with σ2 the variance of the service time distribution.

Proof of Proposition 3.1. We sketch the proof for
the departure epochs. We note that the proof technique is
similar to that of the state-space collapse result in [15]. For
the proof for the arbitrary epochs we refer to the technical
report [1].
Let π(q⃗) be the stationary distribution of (Q1, . . . , QK)

and let

p(z⃗) = E(zQ1
1 · · · zQK

K ) =

∞∑
q1=0

· · ·
∞∑

qK=0

zq11 . . . zqKK π(q⃗) (3)

be its joint probability generating function. We de�ne

r(z⃗) =
∑

(q1,...,qK) ̸=(0,...,0)

π(q⃗)

q1p1 + . . .+ qKpK
zq11 . . . zqKK .

In [9] it is shown that p(·) satis�es

p(z1, . . . , zK) = 1− ρ+

K∑
k=1

pkzk
∂

∂zk
r(z1, . . . , zK), (4)

and that r(·) satis�es
K∑

k=1

pk(zk −B∗
k(λ−

K∑
j=1

λjzj))
∂

∂zk
r(z1, . . . , zK)

= (ρ− 1)(1−
K∑

k=1

λk

λ
B∗

k(λ−
K∑

j=1

λjzj)). (5)

Denote e−(1−ρ)s⃗ = (e−(1−ρ)s1 , . . . , e−(1−ρ)sK ). We study
the Laplace transform of (1− ρ)(Q1, . . . , QK) as ρ ↑ 1, i.e.,

lim
ρ↑1

p(e−(1−ρ)s⃗) = lim
ρ↑1

E(e−(1−ρ)s1Q1 · · · e−(1−ρ)sKQK ).

Using (4), we show the existence of a function r̂(s⃗) such that

lim
ρ↑1

p(e−(1−ρ)s⃗) =
K∑

k=1

pk
∂r̂(s⃗)

∂sk
. (6)

From (5) it follows that r̂ satis�es:

0 =
K∑

k=1

pk(−sk + E(Bk)
K∑

j=1

λ̂jsj)
∂r̂(s⃗)

∂sk
.

From the above partial di�erential equation it can be ob-
tained that the function r̂(s⃗) is constant on the (K − 1)-

dimensional hyperplane Hc := {s⃗ ≥ 0⃗ :
∑K

j=1

λ̂j

pj
sj = c},

c > 0, see [1] for the full proof. As r̂(s⃗) is constant on Hc, it

depends on s⃗ only through
∑K

j=1 λ̂jsj/pj . Then, from (6) it

follows that E(e−
∑K

k=1 skQ̂k) = limρ→1 p(e
−(1−ρ)s⃗) depends

on s⃗ only through
∑K

j=1 λ̂jsj/pj . This implies that pi
λ̂i
Q̂i =

pj

λ̂j
Q̂j almost surely for all i, j, and we obtain (Q̂1, ..., Q̂K)

d
=

( λ̂1
p1

, λ̂2
p2

, ..., λ̂K
pK

)Y, with Y distributed as p1
λ̂1

Q̂1.

To conclude that Y is exponentially distributed we use
the fact that the scaled workload in the M/G/1 queue in
heavy-tra�c is exponentially distributed [10, 11]. 2

4. SIZE­BASED SCHEDULING
In this section we investigate how the choice of the weights

in�uences the performance of the system. With each class of
customers we associate a cost cj ≥ 0, j = 1, . . . ,K, and we

are interested in the holding cost
∑K

j=1 cjNj . In the heavy-
tra�c regime we obtain that the scaled holding cost de-
creases �stochastically� as classes with lower value for ck

E(Bk)

have larger weights. We will write N
(p)
j (N̂

(p)
j ) instead of Nj

(N̂j) to emphasize the dependence on the weights p1, . . . , pK .

Proposition 4.1. Let cj ≥ 0, j = 1, . . . ,K. Without loss
of generality we assume that c1

E(B1)
≥ c2

E(B2)
≥ . . . ≥ cK

E(BK)
.

If
pj

pj+1
≤ p̃j

p̃j+1
, for all j = 1, . . . ,K − 1, then

lim
ρ↑1

(1− ρ)

K∑
j=1

cjN
(p)
j ≥st lim

ρ↑1
(1− ρ)

K∑
j=1

cjN
(p̃)
j ,

where ≥st denotes the usual stochastic ordering, i.e., X ≥st

Y if and only if P(X ≥ z) ≥ P(Y ≥ z) for all z.



Sketch of proof. From Proposition 3.1 we obtain that, as

ρ ↑ 1, the scaled holding cost, (1−ρ)
∑K

j=1 cjN
(p)
j , converges

in distribution to an exponentially distributed random vari-
able with mean

K∑
j=1

cjE(N̂ (p)
j ) =

∑K
j=1

λ̂j

pj
cj

2
∑K

j=1

λ̂j

pj
E(Bj)

K∑
j=1

λ̂jE(B2
j ). (7)

In order to prove the stochastic ordering result it is therefore
su�cient to check that the ordering result holds for themean
holding cost (7). 2

It is well-known that the so-called cµ-rule (the non-preemptive
version) minimizes the mean number of customers in a non-
preemptive M/G/1 queue [5]. Under this rule, when the
server gets idle, the next customer to be served is the one
having the highest value for ci/E(Bi). The cµ-rule is a par-
ticular case of the relative-priority policy which can be re-
trieved by letting the ratios p̃j/p̃j+1 go to ∞, j = 1, . . . ,K
(assuming that the classes are ordered such that c1

E(B1)
≥

c2
E(B2)

≥ . . . ≥ cK
E(BK)

). Hence, Proposition 4.1 can be seen

as an extension of the optimality of the cµ-rule in the heavy-
tra�c regime: the performance improves as larger weights
are assigned according to the values of ck/E(Bk).

Example 1 (Two classes of customers). We con-
sider two classes of customers (K = 2) and assume that
c1/E(B1) ≥ c2/E(B2). Without loss of generality, assume
that p1+p2 = p̃1+p̃2 = 1. By Proposition 4.1 we obtain that
the scaled holding cost in the (p)-system will be stochastically
smaller than that in the (p̃)-system if and only if p1 ≥ p̃1.
Hence, the performance improves as a larger weight, i.e.,
more preference, is given to class 1.

5. WAITING TIME DISTRIBUTION
We denote by Wk the waiting time for a class-k customer.

We have the following result:

Proposition 5.1. As (λ1, . . . , λK) → (λ̂1, . . . , λ̂K),

(1− ρ)(Wk, N1, . . . , NK)
d→ X(Zk,

λ̂1

p1
, . . . ,

λ̂K

pK
),

where X and Zk are exponentially distributed independent
random variables with E(X) = 1/ν(p), E(Zk) = 1/pk, and
1/ν(p) given by Equation (2).

Sketch of proof. We refer to the report [1] for the full
proof.
Let Tk(u, z1, . . . , zK) = E(e−uWkzN1

1 · · · zNK
K ) denote the

joint Laplace transform of the queue-length vector and the
waiting time. Our goal is to study the Laplace transform

lim
ρ↑1

Tk((1− ρ)u, e−(1−ρ)s⃗)

= lim
ρ↑1

E(e−u(1−ρ)Wke−
∑K

j=1 sk(1−ρ)Nk ).

In [9] it is shown that Tk(u, z1, . . . , zK) is the unique solu-
tion of a partial di�erential equation. After taking the limit
ρ ↑ 1 we derive that its solution is given by

lim
ρ↑1

Tk((1− ρ)u, e−(1−ρ)s⃗)

=
pkν(p)

u
e

pk(ν(p)+y)

u

∫ ∞

pk(ν(p)+y)/u

e−x

x
dx,

with y =
K∑

j=1

λ̂j

pj
sj . This coincides with the Laplace trans-

form of the random vector X(Zk,
λ̂1
p1

, . . . , λ̂K
pK

) and hence we

obtain the result. 2

Remark 2 (Random-order-of-service). We note that
in the case of one class, K = 1, the distribution of the wait-
ing time has been obtained previously in [12, 16].

6. REFERENCES
[1] U. Ayesta, A. Izagirre, and I.M. Verloop. Heavy-tra�c

analysis of a multi-class queue with relative priorities.
Technical report, 2011.

[2] S.C. Borst, O.J. Boxma, J.A. Morrison, and
R. Núñez-Queija. The equivalence between processor
sharing and service in random order. Operations
Research Letters, (31):254�262, 2003.

[3] O.J. Boxma, D. Denteneer, and J.A.C. Resing. Some
models for contention resolution in cable networks.
Lect. Notes in Comp. Sc., 2345:117�128, 2002.

[4] O.J. Boxma, S.G. Foss, J.-M. Lasgouttes, and
R. Núñez-Queija. Waiting time asymptotics in the
single server queue with service in random order.
Queueing Systems, (46):35�73, 2004.

[5] E. Gelenbe and I. Mitrani. Analysis and Synthesis of
Computer Systems. London: Academic Press, 1980.

[6] M. Haviv and J. van der Wal. Equilibrium strategies
for processor sharing and random queues with relative
priorities. Probability in the Engineering and
Informational Sciences, 11:403�412, 1997.

[7] M. Haviv and J. van der Wal. Waiting times in queues
with relative priorities. Operations Research Letters,
(35):591�594, 2007.

[8] J. Kim. Queue length distribution in a queue with
relative priorities. Bull. Korean Math. Soc.,
46:107�116, 2009.

[9] J. Kim, J. Kim, and B. Kim. Analysis of the M/G/1
queue with discriminatory random order service
policy. Performance Evaluation, 68(3):256�270, 2011.

[10] J.F.C. Kingman. The single server queue in heavy
tra�c. Proc. Cambr. Philos. Soc., 57:902�904, 1961.

[11] J.F.C. Kingman. On queues in heavy tra�c. Journal
of the Royal Statistical Society. Series B,
Methodological, 24:383�392, 1962.

[12] J.F.C. Kingman. On queues in which customers are
served in random order. Proc. Cambridge Philos. Soc.,
(58):79�91, 1962.

[13] J.F.C. Kingman. Queue disciplines in heavy tra�c.
Math. of Operations Research, 7(2):262�271, 1982.

[14] C. Palm. Waiting times with random served queue.
Tele1 (English edition; original 1938), 1�107, 1957.

[15] I.M. Verloop, U. Ayesta, and R. Núñez-Queija.
Heavy-tra�c analysis of a multiple-phase network
with discriminatory processor sharing. To appear in
Operations Research, 2011.

[16] A.P. Zwart. Heavy-tra�c asymptotics for the
single-server queue with random order of service.
Operations Research Letters, (33):511�518, 2005.


