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ABSTRACT
We analyze a generalization of the Discriminatory Processor
Sharing (DPS) queue in a heavy-traffic setting. Customers
present in the system are served simultaneously at rates con-
trolled by a vector of weights. We assume phase-type dis-
tributed service requirements and allow that customers have
different weights in various phases of their service.
We establish a state-space collapse for the queue length vec-
tor in heavy traffic. The result shows that in the limit, the
queue length vector is the product of an exponentially dis-
tributed random variable and a deterministic vector. This
generalizes a previous result by [12] who considered a DPS
queue with exponentially distributed service requirements.
We finally discuss some implications for residual service re-
quirements and monotonicity properties in the ordinary DPS
model.

1. INTRODUCTION
The Discriminatory Processor Sharing (DPS) model, intro-
duced in [11], is a versatile generalization of the celebrated
(Egalitarian) Processor Sharing (PS) model. DPS allows
class-based differentiation by assigning different weights to
customers of different classes. As new customers join the
system and others leave after having completed their service
requirement, the actual resource allocation to each customer
fluctuates dynamically over time.
The literature devoted to the analysis of DPS has been sig-
nificantly extended over the past decade, as renewed interest
in DPS arose due to its relevance in communication networks
with distributed control, in particular the Internet [2]. An
extensive survey of the DPS literature can be found in [1].
The seminal paper [6] provided the first analysis of the mean
sojourn time conditioned on the service requirement. As a
by-product, the mean queue lengths of the various classes
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were shown to depend on the entire service requirement dis-
tributions, of all customer classes. This as opposed to the
egalitarian PS model, where the marginal queue lengths have
a geometric distribution that only depends on the average
loads of all classes. Although not strictly insensitive to-
wards higher moments of service requirement distributions,
the DPS model was shown to have finite mean queue lengths
irrespective of any higher-order characteristics [3].
Several papers have analyzed the discriminatory processor
sharing model assuming overload conditions with general
service requirement distributions. In [2] the authors deter-
mine the queue length growth rates of the standard DPS
model. Extensions to bandwidth-sharing networks [5] and
a framework similar to ours [4], have been obtained more
recently. In these references the transient behavior of the
queue lengths is studied under overload conditions, while
we investigate the convergence of the (scaled) steady-state
distribution as the critical load is approached.
In the present paper, we assume that customers have phase-
type service requirement distributions and we allow for dif-
ferent weights in various phases of their service. This exten-
sion allows for example to incorporate sophisticated schedul-
ing techniques that give preferential treatment to customers
that are likely to be close to service completion, thus reduc-
ing the numbers of customers in the system and their mean
response times, cf. [13]. Similar generalizations of DPS were
previously considered by [4, 7, 8]. The analysis in [7] as-
sumes heavy traffic conditions and finite second moments of
the service times. Through appropriate choices for a quite
general functional of the queue length process, [7] determines
the heavy-traffic distributions of the marginal queue lengths
and response times by using a direct relationship with crit-
ical Crump-Mode-Jagers branching processes. Our results
are complementary: On one hand we mainly concentrate on
the queue lengths, and on the other hand we study the joint
queue length distribution. Doing so, we establish a state-
space collapse for the queue length vector in heavy traffic.
The reduction of dimensionality of a multi-variate stochas-
tic process under asymptotic (heavy-traffic) scaling has been
demonstrated previously in other queueing models, see for
example [9, 14].
Our work is inspired by the heavy-traffic analysis of the tra-
ditional DPS model with exponential service requirements
in [12], where it was used that the variability of the queue
length vector is of a lower order than the mean queue lengths.
In [10] it was indicated that a similar approach as in [12] can
be used for DPS with phase-type distributions as well. Here



we follow a different and more direct approach, by investi-
gating the joint probability generating function of the queue
lengths in a heavy-traffic setting.

2. MAIN RESULT
Our model can be viewed as a service station with J cus-
tomer types. Customers arrive according to a Poisson arrival
process with rate λ, and an arriving customer is of type i
with probability p0i. Customers of type i have an exponen-
tially distributed service requirement with mean 1

µi
. After

service completion, customers of type i become of type j
with probability pij , and leave the system with probability

pi0 := 1 −
PJ

j=1 pij . We denote the number of type-j cus-
tomers in stationarity by Qj . The J customer types share a
common resource of capacity one. There are positive weights
g1, . . . , gJ associated with each of the types. Whenever there
are qi type-i customers, i = 1, . . . , J , present in the system,
each type-j customer is served at rate

gjPJ
i=1 giqi

, j = 1, . . . , J.

Note that, indeed, this framework essentially represents the
M/PH/1 DPS queue with J service phases, allowing cus-
tomers in different service phases (i.e., customers of different
types in the above description) to have different weights. In
fact, since customers may start in each of the J phases, one
can also view it as a multi-class M/PH/1 DPS queue hav-
ing phase-dependent weights, with at most J classes, and
each class having a distribution with at most J phases. The
fact that all phase-type distributions are composed with the
same set of exponential phases is no restriction, since the
number J is arbitrary and phases need not mutually com-
municate. To avoid confusion, we stick to the terminology
of types used in the model description above.
The expected remaining service requirement until departure
for a customer that is now of type i, denoted by ERi, satisfies
E(Ri) = 1

µi
+
PJ

j=1 pijE(Rj). Note that this includes service

in all subsequent stages as the customer changes from one
type to another. Let E(R̄) = (E(R1), . . . , E(RJ))T and let
P be a J × J matrix with P = (pij), i, j = 1, . . . , J . Since
P is a sub-stochastic matrix, (I − P )−1 is well defined and
we can write

E(R̄) = (I − P )−1m̄, with m̄ = (1/µ1, . . . , 1/µJ)T .

Define the total traffic load by

ρ := λ

JX
j=1

p0jE(Rj).

Let γi represent the expected number of times a customer
is of type i during its stay at the service station. Hence,
γ1, . . . , γJ , satisfy the following equations

γi = p0i +

JX
j=1

γjpji, i = 1, . . . , J,

i.e., γ̄T = p̄T
0 (I − P )−1, with γ̄ = (γ1, . . . , γJ)T and p̄0 =

(p01, . . . , p0J)T . Note that γi
µi

represents the expected cu-

mulative amount of service a customer requires while being
of type i during its stay at the station. We denote the load
corresponding to customers while they are of type i, by

ρi := λ
γi

µi
.

Hence, for the total traffic load ρ we may equivalently write

ρ = λp̄T
0 E(R̄) = λp̄T

0 (I − P )−1m̄ = λγ̄T m̄ =

JX
j=1

ρj .

Our main result shows that the steady-state distribution of
the multi-dimensional queue length process takes a rather
simple form when the system is near saturation, i.e., ρ ↑ 1,
which is commonly referred to as the heavy-traffic regime.
This regime can be accomplished by fixing the p̄0, P and m̄,
and letting

λ ↑ λ̂ :=
1

p̄T
0 (I − P )−1m̄

,

since then ρ = λp̄T
0 (I − P )−1m̄ ↑ 1. In heavy traffic, we

denote by

ρ̂i = λ̂
γi

µi

the load corresponding to customers while they are of type i
(
PJ

j=1 ρ̂j = 1).
We will now state our main result, which establishes a state-
space collapse for the queue length vector in the heavy-traffic
regime.

Proposition 2.1. When scaled with 1−ρ, the queue length
vector has a proper limiting distribution as (ρ1, . . . , ρJ) →
(ρ̂1, . . . , ρ̂J), such that ρ ↑ 1,

(1− ρ)(Q1, Q2, . . . , QJ)
d→ X ·

�
ρ̂1

g1
,
ρ̂2

g2
, . . . ,

ρ̂J

gJ

�
,

where
d→ denotes convergence in distribution and X is an

exponentially distributed random variable with mean

E(X) =

PJ
j=1 ρ̂jE(Rj)PJ
j=1

ρ̂j

gj
E(Rj)

.

3. SKETCH OF THE PROOF
The basis for the proof of Proposition 2.1 is a functional
equation for the generating function of the joint queue length
process which we derive here. Denote by Q̄ and q̄ the vectors
(Q1, Q2, . . . , QJ) ≥ 0̄ and (q1, q2, . . . , qJ) ≥ 0̄, respectively.
The corresponding equilibrium distribution is denoted by
π(q̄) := P(Q̄ = q̄). For notational convenience we use the
following transformation:

R(0̄) := 0 and R(q̄) :=
π(q̄)

JP
j=1

gjqj

, for q̄ 6= 0̄.

Also, let p(z̄) and r(z̄) denote the generating functions of
π(q̄) and R(q̄), respectively, where z̄ = (z1, . . . , zJ) and
|zi| < 1 for i = 1, . . . , J :

p(z̄) =

∞X
q1=0

· · ·
∞X

qJ=0

zq1
1 · . . . · zqJ

J π(q̄),

r(z̄) =

∞X
q1=0

· · ·
∞X

qJ=0

zq1
1 · . . . · zqJ

J R(q̄).

Since π(0̄) = 1− ρ, it follows that

JX
i=1

gizi
∂r(z̄)

∂zi
+ 1− ρ = p(z̄). (1)



From the balance equations for π(q̄) [10], we then obtain the
following partial differential equation for r(z̄):

JX
i=1

 
µigi(pi0 +

JX
j=1

pijzj − zi)− λgizi(1−
JX

j=1

p0jzj)

!
∂r

∂zi

= λ(1− ρ)(1−
JX

i=1

p0izi). (2)

This equation was derived in [12] for exponentially distributed
service requirements. Equation (2) turns out to be very use-
ful to analyze the joint queue length distribution in heavy
traffic, because it allows for an explicit solution in that
asymptotic regime as we will indicate next.
We write s̄ = (s1, . . . , sJ) and use the short hand notation

e−(1−ρ)s̄ = (e−(1−ρ)s1 , . . . , e−(1−ρ)sJ ). Our goal is to study

lim
ρ↑1

E(e−(1−ρ)s1Q1 · . . . · e−(1−ρ)sJ QJ ) = lim
ρ↑1

p(e−(1−ρ)s̄).

From (1) it can be argued that there exists a function r̂(·)
such that

lim
ρ↑1

p(e−(1−ρ)s̄) =

JX
i=1

gi
∂r̂(s̄)

∂si
. (3)

Taking z̄ equal to e−(1−ρ)s̄ in (2), dividing both sides by 1−ρ
and taking the limit of ρ ↑ 1, this gives

JX
i=1

gi

 
µi(si −

JX
j=1

pijsj)− λ̂

JX
j=1

p0jsj

!
∂r̂(s̄)

∂si
= 0.

From this partial differential equation it can be shown that
the function r̂(s̄) is constant on the J − 1 dimensional hy-
perplane

Hc := {s̄ ≥ 0̄ :

JX
j=1

ρ̂j

gj
sj = c}, c > 0.

Together with (3), it follows that limρ↑1 p(e−(1−ρ)s̄) depends

only on s̄ through
PJ

j=1

ρ̂j

gj
sj . This can be used to prove

Proposition 2.1, see [15] for further details.

4. THE STANDARD DPS QUEUE
The standard DPS model with several customer classes and
phase-type distributed service requirements is a special case
of the framework studied here. In particular, Proposition 2.1
gives a proof of the state space collapse stated in [10, Theo-
rem 5]. It also implies several other interesting new results
for the standard DPS queue, which we briefly mention here,
referring to the technical report [15] for full details.
For example, we can show that the (scaled) numbers of cus-
tomers in the various classes and the remaining service re-
quirements of any finite subset of customers are independent
in a heavy-traffic setting. In particular, the remaining ser-
vice requirement of any customer is distributed according to
the forward recurrence time of its service requirement.
In addition, it follows for a heavy-traffic setting that the to-
tal mean queue length in a standard DPS queue reduces as
customers with lower variability (measured in terms of the
mean forward recurrence time) in their service requirements
obtain larger weights. This property can be understood from
the standard intuition of size-based scheduling: Customers

belonging to classes with highly variable service distribu-
tions are likely to have longer residual service requirements
and should therefore be given lower priority.
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